Core Courses

PHYS 2999: Physics and Astronomy Colloquium

PHYS 2999
Credits: 1

The Physics and Astronomy Colloquium, held jointly with the Carnegie Mellon University Physics Department, provides an opportunity for all faculty and students to hear invited lectures and discuss problems of current interest to members of the Physics and Astronomy Department. The talks are intended for faculty and students from all areas, and thereby constitute a unifying element for the department. Also, talks of even broader interest are occasionally presented.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL

PHYS 2566: Nonrelativistic Quantum Mechanics II

PHYS 2566
Credits: 3

The second term of this course applies the previously developed ideas and techniques of quantum mechanics to more complicated systems. Time-independent and time-dependent perturbation theories are developed and applied. Formal scattering theory and approximation methods will be presented. Applications are expected to include the interaction of electromagnetic radiation with matter; resonance scattering and bound states; identical particles and an introduction to second quantization; and, if time and other considerations permit, a brief introduction to relativistic quantum mechanics.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL

PHYS 2565: Nonrelativistic Quantum Mechanics I

PHYS 2565
Credits: 3

This course is the first half of a systematic survey of nonrelativistic quantum mechanics. Topics to be covered include: prehistory of quantum theory, matrix mechanics, wave mechanics, general formalism of quantum theory (equivalence of matrix and wave mechanics). Simple quantum systems: two state systems, 1D, 3D potential problems, potential scattering, stationary state and time-dependent perturbation theory.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL
Syllabus: DL

PHYS 2997: Teaching of Astronomy and Physics

PHYS 2997
Credits: 1

This is a mandatory course for all physics graduate students. The overall objective of this course is to prepare incoming graduate students for their duties as Teaching Assistants (TAs) and lay the foundation for any subsequent teaching role they may assume. This course will introduce students to the principles of learning and physics education research-based curricular and pegagogical approaches using concrete examples. There will be opportunity to reflect upon various aspects of the course and teaching and learning in general.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL

PHYS 2555: Advanced Electricity and Magnetism

PHYS 2555
Credits: 4

This is a four-credit course in classical electricity and magnetism, based on Maxwell's Equations. Both the underlying physical concepts and the mathematical formulation of the theory will be explored. The theory will be applied to a variety of physical systems. The topics will include: electrostatics, magnetostatics, electromagnetic induction, properties of electromagnetic waves, interaction of electromagnetic waves with materials, waveguides and cavities, radiation and antennas, multipole fields, scattering of electromagnetic waves, and the special theory of relativity.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL

PHYS 2373: Mathematical Methods in Physics

PHYS 2373
Credits: 3

This course for undergraduate honors majors and some first year graduate students will prepare you for most of the mathematical techniques required in most first year physics graduate courses, at Pitt or elsewhere. The course will include: Theory and applications of analytic functions, with emphasis on contour integration and infinite series. Review of finite-dimensional linear vector spaces, leading to an introduction to Hilbert spaces. Applications to ordinary and partial differential equations, including introduction to the most commonly used special functions.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL

PHYS 2541: Thermodynamics and Statistical Mechanics I

PHYS 2541
Credits: 3

This graduate core course provides the background in thermodynamics and statistical mechanics required for admission to candidacy for the Ph.D. in physics or astronomy. Topics include thermodynamics, ensemble theory (microcanonical, canonical and grand canonical ensembles), classical and quantum (Bose-Einstein and Fermi-Dirac) statistics, classical and quantum ideal gases, and other applications.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL
Syllabus: DL
Syllabus: DL

PHYS 2513: Dynamical Systems

PHYS 2513
Credits: 3

The Lagrangian and Hamiltonian formulations of classical mechanics will be emphasized. Topics will be chosen from among the following list: conservation theorems, small oscillations, rigid-body motion, canonical transformations, an introduction to the theory of chaotic motions, Navier Stokes equation, relativistic Lagrangian mechanics, classical field theory, and Noether's theorem.

ProfessorCourse YearCourse SemesterDownload
Syllabus: DL
Syllabus: DL

PHYS 2998: Teaching of Physics/Astronomy, Practicum

PHYS 2998

This course is required of all graduate students fulfilling the department teaching requirement. This requirement involves full responsibility for teaching undergraduate recitations or labs, and in some cases for advanced graduate students, a course in physics and astronomy during one term.