Sergey Frolov

  • Associate Professor
220 Allen Hall


Majorana Fermions

Majorana fermions have the unique property that they are equal to their own anti-particles. Such fermions were heavily looked for but never observed among elementary particles. Recently, Majorana fermions were proposed theoretically as quasiparticles in solid state systems with a topologically protected phase. I am working on Majorana fermions in semiconductor nanowires combined with superconductors. Majorana fermions are important in the context of topological quantum computing, which is a new paradigm that offers decoherence-free manipulation of quantum information.

Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices Science Express (2012)

My explanation of the paper for broad audience

Press coverage: MSNBC; BBC; Reuters (video); Physics World; Science; Nature

Single-electron spin qubits

Semiconductor nanowires are flexible building blocks for nanoelectronics. It has recently become possible to confine single electrons in nanowires using electric fields from nearby gates. These electrons are natural quantum bits. We operate qubits in InAs nanowires with the qubit basis being the two spin-orbital states of single electrons. These states are the hybrids of spin and motion, and we take advantage of both. We can store information in the long-living spin state, but manipulate the qubit using the orbital part of the wavefunction, by simply oscillating the electron back and forth inside the nanowire. Spin-orbit qubits are controlled by electric fields, which is the preferred method of control for nanostructures.

Putting a new spin on quantum-dot qubits Physics Today (2011)
Qubit in a Nanowire (free access) (2010)


  •  Fellow of the National Academy of Sciences Kavli Frontiers of Science (2017)
  •  ONR Young Investigator (2017)
  •  Cottrell Scholar (2016)
  •  Alfred Sloan Research Fellow (2014)
  •  NSF CAREER Award (2013)
  •  Newcomb Cleveland Prize (2013)


Selected Publications

Most of my papers are available on (open access)

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov and R. A. Duine
New perspectives for Rashba spin–orbit coupling
Nature Materials 14, 871-882 (2015)

S.R. Plissard, I. van Weperen, D. Car, M.A. Verheijen, G.W.G. Immink, J. Kammhuber, L.J. Cornelissen, D.B. Szombati, A. Geresdi, S.M. Frolov, L. P. Kouwenhoven and E.P.A.M. Bakkers
Formation and electronic properties of InSb nanocrosses
Nature Nanotechnology 8, 859 (2013)

S. M. Frolov, S. R. Plissard, S. Nadj-Perge, L. P. Kouwenhoven and E. P. A. M. Bakkers
Quantum Computing based on Semiconductor Nanowires
MRS Bulletin 38, 809 (2013) – a review article in the issue on Materials Issues for Quantum Computation

V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven
Electrical control of single hole spins in nanowire quantum dots
Nature Nanotechnology 8, 170 (2013)

I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven
Quantized Conductance in an InSb Nanowire
Nano Letters, 13 387 (2013)

V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven
Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices
Science 336, 1003-1007 (2012)

S.R. Plissard, D. Slapak, M.A. Verheijen, M. Hocevar, G. Immink, I. van Weperen, S. Nadj-Perge, S.M. Frolov, L.P. Kouwenhoven, E.P.A.M. Bakkers
From InSb nanowires to nanocubes: Looking for the sweet spot
Nano Letters 12, 1794–1798 (2012)

S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, L. P. Kouwenhoven
Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires
Physical Review Letters 108, 166801 (2012)

S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers and L.P. Kouwenhoven
Spin-orbit qubit in a semiconductor nanowire
Nature 468, 1084-1087 (2010)

Graduate Advisor

Yifan Jiang
Amrita Purkayastha
Hao Wu
Peng Yu
Azarin Zarassi
Bomin Zhang
My Website >