Michael Hatridge

  • Adjunct Associate Professor


My laboratory contains a fabrication area with a custom aluminum evaporator for Josephson junction fabrication and a measurement area with a full suite of microwave characterization tools and dilution refrigerators.


Superconducting quantum information

Quantum information is a rapidly growing theoretical and experimental field which seeks to harness the complexity and coherence of quantum bits to address challenges in computation and the simulation of complex quantum systems. My research focuses on the use of superconducting microwave circuits as a quantum information platform. In particular, we will focus on the use of microwave photons as quantum information carriers. We will develop techniques to create, manipulate, and measure microwave light and use it to entangle larger quantum systems.

Efficient amplification of microwave signals is fundamental to this research, as it allows us to faithfully decode and record information contained in pulses of microwave light. We will develop superconducting parametric amplifiers with the goal of achieving performance very close to the quantum limit, where the amplifier itself can perform unitary operations on its input fields. This allows us to create new and complex measurement operations, which in turn will be used to entangle remote quantum bits and detect and remedy errors in quantum registers.


  • Alfred Sloan Research Fellow (2020)
  • NSF CAREER Award (2019)

Selected Publications

Graduate Advisor

Xi Cao
Tzu-Chiao Chien
Olivia Lanes
Pinlei Lu
Maria Mucci
Chao Zhou