Ayres Freitas


403 Allen Hall
(412) 624-9060
My Website >
Associate Professor


My research mostly deals with the phenomenology of new particles and interactions at colliders. The breaking of the electroweak symmetry and the stabilization of the electroweak scale has inspired new ideas like the Higgs mechanism, supersymmetry, extra dimensions, technicolor and little Higgs models. I am studying how these models can be constrained by existing precision data and possibly could be discovered at future experiments, most notably at the Large Hadron Collider. Of special interest to me are precision analyses that would allow to reconstruct the underlying framework of a model from experimental data. On the technical side, this involves development of loop calculation techniques and Monte–Carlo tools. 

Some of the new physics models quite naturally could explain the origin of ordinary matter and/or dark matter in the universe. This opens up striking connections between collider physics and astrophysics and cosmology.


Selected Publications

  • "Heavy color-octect particles at the LHC," C.-Y. Chen, A. Freitas, T. Han, K.S.M. Lee, JHEP 1505, 135 (2015)
  • "Leptophilic dark matter in lepton interactions at LEP and ILC," A. Freitas and S. Westhoff, JHEP 1410, 116 (2014)
  • "Precision Measurements of Higgs Couplings: Implications for New Physics Scales," C. Englert, A. Freitas, M. MÃ_hlleitner, T. Plehn, M. Rauch, M. Spira, K. Walz, invited review,  J. Phys. G 41, 113001 (2014)
  • "Testing the Muon g-2 Anomaly at the LHC," A. Freitas, J. Lykken, S. Kell, S. Westhoff, JHEP 1405, 145 (2014)
  • "Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson," A. Freitas, JHEP 1404, 070 (2014)
Full publication list

Graduate Advisor

Daniel Wiegand