PHYS 1341/2341: Thermodynamics and Statistical Mechanics, Spring 2022

Class: Tue/Thu 9:30-10:45am, 11 Thaw

Professor: Andrew Mugler (he/him), 206 Allen, andrew.mugler@pitt.edu

TA: Brenda Gomez Cortes (she/her), 109A-5 OEH, bdg43@pitt.edu

Books: Fermi, Thermodynamics | Kennett, Essential Statistical Physics

Optional: Reif, Fundamentals of Statistical and Thermal Physics

Office Hours: Andrew: By appointment—please do not hesitate to email.

Brenda: Tue 12-1pm, https://pitt.zoom.us/j/9133369627

Credit: 40% Homework quizzes* | 20% Midterm exam | 40% Final exam

*Last 15 min on Thu, random HW problem, possibly modified

*Makeup quiz must be excused in advance and taken within 1 week

Virtual | Pre-recorded | No class | Exam | Homework quiz | Ungraded HW quiz (virtual)

Jan 11	Introduction	Jan 13	Probability/statistics 1.2
Jan 18	Micro/macrostates 1.3, 1.4, 5.1.1	Jan 20	Microcanonical ensemble 2
Jan 25	Temperature, entropy 2.1, IV.13	Jan 27	Pressure
Feb 1	Heat capacity II	Feb 3	State transitions I, II
Feb 8	Heat engines III	Feb 10	Refrigerators III
Feb 15	Thermodynamics survey	Feb 17	Thermodyn. potentials V B.3
Feb 22	Canonical ensemble 4, 4.4	Feb 24	Midterm exam
Mar 1	Kinetics 5	Mar 3	Partition function 4.2
Mar 8	Spring break	Mar 10	Spring break
Mar 8 Mar 15	Spring break Gibbs' paradox 4.5	Mar 10 Mar 17	
Mar 15	Gibbs' paradox 4.5	Mar 17	Equipartition theorem 4.7
Mar 15 Mar 22	Gibbs' paradox 4.5 Non-ideal gases 4.6 IV	Mar 17 Mar 24	Equipartition theorem 4.7 Phase transitions
Mar 15 Mar 22 Mar 29	Gibbs' paradox 4.5 Non-ideal gases 4.6 IV Critical points	Mar 17 Mar 24 Mar 31	Equipartition theorem 4.7 Phase transitions Grand canonical ensemble 6
Mar 15 Mar 22 Mar 29 Apr 5 Apr 12	Gibbs' paradox 4.5 Non-ideal gases 4.6 IV Critical points Chemical potential 6.1	Mar 17 Mar 24 Mar 31 Apr 7	Equipartition theorem 4.7 Phase transitions Grand canonical ensemble 6 Quantum gases 7

Learning Objectives:

- Demonstrate understanding of the concepts, principles, and laws of thermodynamics and statistical mechanics.
- Describe a physical situation using multiple representations as necessary, such as written conceptual statements, mathematical equations, diagrams, and graphs, and be able to translate from one representation to another.
- Apply mathematical concepts and methods such as probability and statistics, algebra, calculus, and trigonometry as necessary to analyze and solve problems.
- Use physical reasoning and units to obtain order-of-magnitude estimates.

<u>Academic Integrity</u> is of paramount importance. Violations will not be tolerated. <u>Disability Resources and Services</u> are available for accommodations. Title IX mandatory reporters include professors. I am required to report violations.