PHYS 1341/2341: Thermodynamics and Statistical Mechanics, Spring 2022

Class:	Tue/Thu 9:30-10:45am, 11 Thaw		
Professor:	Andrew Mugler (he/him), 206 Allen, andrew.mugler@pitt.edu		
TA:	Brenda Gomez Cortes (she/her), 109A-5 OEH, <u>bdg43@pitt.edu</u>		
Books:	Fermi, <i>Thermodynamics</i> Kennett, <i>Essential Statistical Physics</i> Optional: Reif, <i>Fundamentals of Statistical and Thermal Physics</i>		
Office Hours:	Andrew: By appointment—please do not hesitate to email. Brenda: Tue 12-1pm, <u>https://pitt.zoom.us/j/9133369627</u>		
Credit:	40% Homework quizzes* 20% Midterm exam 40% Final exam *Last 15 min on Thu, random HW problem, possibly modified *Makeup quiz must be excused in advance and taken within 1 week		

Virtual | Pre-recorded | No class | Exam | Homework quiz | Ungraded HW quiz (virtual)

Jan 11	Introduction	Jan 13	Probability/statistics 1.2
Jan 18	8 Micro/macrostates 1.3, 1.4, 5.1.1		Microcanonical ensemble 2
Jan 25	Jan 25 Temperature, entropy 2.1, IV.13		Pressure
Feb 1	1 Heat capacity II		State transitions I, II
Feb 8	Heat engines III	Feb 10	Refrigerators III
Feb 15	eb 15 Thermodynamic potentials V B.3		Canonical ensemble 4, 4.4
Feb 22	Kinetics 5	Feb 24	Midterm exam
Mar 1	Partition function 4.2	Mar 3	Gibbs' paradox 4.5
Mar 8	Spring break	Mar 10	Spring break
Mar 15	Equipartition theorem 4.7	Mar 17	Non-ideal gases 4.6 IV
Mar 22	Phase transitions	Mar 24	Critical points
Mar 29	Grand canonical ensemble 6	Mar 31	Chemical potential 6.1
Apr 5	Quantum gases 7	Apr 7	Quantum statistics 7.3
Apr 12	Blackbody radiation 9.1	Apr 14	Ising model 10
Apr 19	Ising model 10	Apr 21	Conclusion
Apr 25-29 Final exam (day/time TBD)			

Learning Objectives:

- Demonstrate understanding of the concepts, principles, and laws of thermodynamics and statistical mechanics.
- Describe a physical situation using multiple representations as necessary, such as written conceptual statements, mathematical equations, diagrams, and graphs, and be able to translate from one representation to another.
- Apply mathematical concepts and methods such as probability and statistics, algebra, calculus, and trigonometry as necessary to analyze and solve problems.
- Use physical reasoning and units to obtain order-of-magnitude estimates.

<u>Academic Integrity</u> is of paramount importance. Violations will not be tolerated. <u>Disability Resources and Services</u> are available for accommodations. <u>Title IX</u> mandatory reporters include professors. I am required to report violations.