Physics 1373/2373: Mathematical Methods in Physics

Fall 2015

- Recommended textbooks:
- Pre-/Co-requisites: Physics 1370
- Lectures: TH 9:30-10:45am (102 Thaw Hall)
- Office hours: M 3:00-4:00pm (403 Allen Hall) or by appointment

Course description

In this class, students will learn about the mathematical tools that are essential for various branches of physics. The class is suitable for undergraduate students planning to go on to graduate school and for first-year graduate students. The lecture will discuss a range of mathematical and calculational methods with a "practical" mindset, i.e. it is less formal than a comparable course in the math department. While the focus lies on the mathematics, I will try to often show examples of applications in physics. Topics to be covered include (time allowing):

- Review of linear algebra and vector spaces
- Vector calculus
- Fourier and Laplace transforms
- Ordinary and partial differential equations
- Sturm-Liouville theory
- Special functions
- Complex analysis
- Calculus of variations
- Introduction to tensors and group theory
- Basics of probability theory

The textbook for this course is "Mathematical Methods for Physics and Engineering" by K. Riley, M. Hobson and S. Bence. I admit that this book is pretty massive, but it covers all relevant topics and not assume that the reader has any advanced knowledge in mathematics. An alternative good book is "Mathematical Methods for Physicists" by G. Arfken, H. Weber and F. Harris, which is more concise and jumps right into the "real stuff", but it makes a good reference.

This course is offered to undergraduate and graduate students. While the lecture is the same for everybody, the homework assignments and exams will differ for students enrolled in PHYS 1373 (undergraduate level) and PHYS 2373 (graduate core course). Each homework sheet will indicate which problems are required for students of PHYS 1373, while the remaining problems are voluntary (for extra credit). Students of PHYS 2373 are expected do all problems on each homework assignment. Note: Physics graduate students must enroll in PHYS 2373.

Readings and in-class activities

This course covers a wide area of mathematical topics, some of which you may be more familiar with
than others. To make the course as useful for everybody as possible, I will not hold lectures in the
traditional style, but instead I will post lecture notes and weekly reading assignments (from either of
the two suggested textbooks) on CourseWeb. You are required to read these materials outside of class
time, complete the short quiz provided, and come to class prepared.

The class time will be used to go through worked examples, discuss questions, and for in-class
problems, which you will solve in small groups. The flow of these activities is flexible, so that I can
adjust them according to your progress and feedback. Your participation in these activities is important,
and although I will not check attendance, you should come to class regularly.

Homework

Homework is an essential part of learning the material of this course. Homework will be assigned each
week on Thursday and collected next week on Thursday. You are encouraged to discuss the homework
problems with each other after you have tried them to the best of your ability, but you cannot copy the
solutions from each other. The homework assignments and solutions will be available for download on
CourseWeb.

Some of the homework problems will be discussed in class (after they have been graded and returned).
For this purpose I will occasionally pick one student at random to present her/his solution on the
board. In this way, you can learn from each other’s solutions, and also practice your presentation skills.

Grading scheme

There will be one mid-term exam and a comprehensive final exam. The dates for the exams will be
announced several weeks in advance. The final grade will be determined by the homework submissions
(30%), and mid-term (25%) and final exam (45%). Students in this course will be expected to comply
with the University of Pittsburgh’s Policy on Academic Integrity. Any student suspected of violating
this obligation for any reason during the semester will be required to participate in the procedural
process, initiated at the instructor level, as outlined in the University Guidelines on Academic Integrity.
This may include, but is not limited to, the confiscation of the examination of any individual suspected
of violating University Policy. Furthermore, no student may bring any unauthorized materials to an
exam, including dictionaries and programmable calculators.

Academic Integrity

Students in this course will be expected to comply with the [University of Pittsburgh’s Policy on
Academic Integrity](#). Any student suspected of violating this obligation for any reason during the
semester will be required to participate in the procedural process, initiated at the instructor level, as
outlined in the University Guidelines on Academic Integrity. This may include, but is not limited to, the
confiscation of the examination of any individual suspected of violating University Policy. Furthermore, no student may bring any unauthorized materials to an exam, including dictionaries and
programmable calculators.

Disability Services

If you have a disability for which you are or may be requesting an accommodation, you are encouraged
to contact both your instructor and [Disability Resources and Services (DRS)](http://drs.pitt.edu), 140 William Pitt Union,
(412) 648-7890, drsrecep@drc.pitt.edu, (412) 228-5347 for P3 ASL users, as early as possible in the term.
DRS will verify your disability and determine reasonable accommodations for this course.